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The phenomenological study of TMDs and 
their extraction from experimental data is 

reviewed, with attention to possible 
sources of uncertainties.  The role of TMDs 

in different processes - SIDIS, e+e- and 
NN inclusive interactions - is discussed. 

Predictions and suggestions for Drell-Yan 
measurements are given.   



! !

simple Sivers functions for u and d quarks are sufficient 
to fit the available SIDIS data 

large and very small x dependence not constrained by data 

talk by A. Prokudin

new and previous  
extraction of       
u and d Sivers 

functions 

Anselmino et al.
Eur. Phys. J. A39,89 (2009)

S. Melis and A. Prokudin, 
preliminary results



possible Sivers-like azimuthal dependence 
from target fragmentation region 
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These are the momentum sum rules satisfied by the unintegrated fracture functions. They might be
useful for constraining and guiding simple models of fracture functions.

5 Cross sections and angular distributions

Contracting the hadronic tensor, Eqs. (23, 24), with the symmetric and antisymmetric part of the
leptonic tensor, Eqs. (13, 14), and using Eq. (25), yields
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We focus on three processes:

1. lepto-production of a spinless hadron, l + N → l′ + h + X;

2. lepto-production of a spinless hadron plus a quark jet, l + N → l′ + h + jet + X;

3. lepto-production of a polarized hadron, l + N → l′ + h↑ + X (integrated over all transverse
momenta).

5.1 Lepto-production of a spinless hadron

Consider the lepto-production of an unpolarized or spinless hadron (for instance, pion lepto-production,
which is the most common process). Inserting Eqs. (30, 33) into Eqs. (49, 50), and using Eq. (10),
one finds that the cross section for this process is
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into non-perturbative PDFs, FFs, or the correlation functions. Consequently, unlike for the TMD distributions, all
field operators defining the non-perturbative functions in the collinear factorization approach are evaluated at the
same light-cone separation with zero “+” and “⊥” components, as shown for example in Eq. (8).
Since the quark-gluon correlation functions in the collinear factorization approach have all their active partons’

transverse momenta integrated, these correlation functions can be related to k⊥-moments of the TMD parton distri-
bution functions. It was shown at the operator level [23, 33, 36] that the ETQS function Tq,F (x, x) is closely related
to the k⊥-moment of Sivers function:

gTq,F (x, x) = −
∫

d2k⊥
|k⊥|2
M

f⊥q
1T (x, k2⊥)|SIDIS (10)

where the subscript “SIDIS” emphasizes that the Sivers functions here are probed in the SIDIS process. We stress
again the importance of the sign convention for the coupling constant g in the definition of the gauge link. If the sign
convention used to define Tq,F (x, x) is different from that in the definition of f⊥q

1T (x, k2⊥), the difference will introduce
an extra factor “−1” in the relation between these two functions, so that there will be no minus sign on the right-hand
side of Eq. (10).
We emphasize that the operator definition in Eq. (8) does not completely fix the quark-gluon correlation function

Tq,F (x, x), unless the renormalization scheme is specified. As is well known from the case of ordinary PDFs, the matrix
element in Eq. (8) is ultraviolet (UV) divergent [39]. Like in the case of PDFs, the quark-gluon correlation function
is really defined in terms of the QCD factorization formalism. The leading UV divergent (the large k⊥) region of the
matrix element on the right-hand-side of Eq. (8) corresponds to the region of phase space with large parton virtuality,
and is required by factorization to be moved from the matrix element into the perturbatively calculated short-distance
functions. The removal or subtraction of the UV divergence is not unique, which leads to the factorization scheme
and scale (µ) dependence of the correlation functions Tq,F (x, x, µ) [40]. In this way, also the relation in Eq. (10) is
subject to the UV subtractions and the adopted factorization scheme, and hence not a unique identity. That said, the
relation (10) provides a natural “zeroth-order” connection between the Sivers and the ETQS functions. It plays an
important role in establishing the consistency between the TMD factorization approach and the collinear twist-three
quark-gluon correlation approach in the descriptions of the SSAs in SIDIS and the Drell-Yan process [33]. It also is a
useful starting point for phenomenological studies and is of much help in testing the various constraints on the quark
Sivers and quark-gluon correlation functions. In the following, we will therefore make use of relation (10), keeping
however in mind the caveats we have made regarding UV renormalization.

III. THE “SIGN MISMATCH”

The quark Sivers functions f⊥q
1T (x, k2⊥) (or equivalently, ∆Nfq/A↑(x, k⊥)) and the twist-3 quark-gluon correlation

functions Tq,F (x, x) have been extracted from experimental data on SSAs for single hadron production in SIDIS and
in hadron-hadron scattering, respectively. In this section, we compare the existing parameterizations of these two
functions and present our findings concerning the “sign mismatch”. We also introduce and discuss various loopholes
that might resolve the apparent inconsistency.

So far the quark Sivers functions have been extracted from the Asin(φh−φs)
UT azimuthal asymmetries in SIDIS. We

consider two such parametrizations here. One is from Ref. [10] (we refer it as “old Sivers”), the other one (“new Sivers”)
from Ref. [11] . They both parametrize the spin-averaged TMD PDFs f q

1 (x, k
2
⊥) and Sivers functions ∆Nfq/h↑(x, k⊥)

for each quark flavor q in the form

f q
1 (x, k

2
⊥) = f q

1 (x)g(k⊥), (11)

∆Nfq/h↑(x, k⊥) = 2Nq(x)f
q
1 (x)h(k⊥)g(k⊥), (12)

where f q
1 (x) is the quark’s spin-averaged collinear PDF,Nq(x) is a fitted function whose functional form is not relevant

for our discussion below, and g(k⊥) is assumed to have a Gaussian form,

g(k⊥) =
1

π〈k2⊥〉
e−k2

⊥/〈k2
⊥〉 (13)

with a fitting parameter 〈k2⊥〉 for the width. However, the two parameterizations adopt different functional forms for
the k⊥-dependence of the Sivers function:

old Sivers: h(k⊥) =
2k⊥M0

k2⊥ +M2
0

, (14)

new Sivers: h(k⊥) =
√
2e

k⊥
M1

e−k2
⊥/M2

1 , (15)

compare

as extracted from fitting AN data, with that obtained by 
inserting in the the above relation the SIDIS extracted 

Sivers functions

similar magnitude, but opposite sign!  
the same mismatch does not occurr adopting 

TMD factorization; the reason is that the hard 
scattering part in higher-twist factorization is 

negative  
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• The last two lines of Eq. (48), which can be rewritten in an alternative, more suitable form as

... sin 2θ′ sin(φSA − φγ + φ′)
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1

2M
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d2k⊥a
2k⊥a − qT (k̂⊥a · q̂T )

2M
∆Nf q

a/↑ f̄ q
b/B , (49)

represent the equivalent of the “Cahn effect” for the single polarized DY, and show a structure very
similar to that of the unpolarized part. These contributions are suppressed by one power of qT /M
and, as in the unpolarized Cahn effect, we can recast the integration on k⊥a similarly to what is done
in Eq. (C9): by doing this one can observe that they can give access to the difference between the
average transverse momenta of the unpolarized and the Sivers distribution functions.

These results become particularly transparent and acquire a phenomenological value when the integrals over
the intrinsic transverse momenta are explicitly performed by using a simple Gaussian model for the TMDs.
Similarly to what was done in the last Section of Ref. [10], we assume the k⊥ dependence of the TMDs can
be factored and approximated with a Gaussian distribution of the form:

fa/A(xa, k⊥a) = fa/A(xa)
e−k2

⊥a/〈k
2

⊥a〉

π〈k2⊥a〉
, (50)

where fa/A(xa), can be taken from the available fits of the world data. In general, we allow for different widths
of the Gaussians for the different parton flavours, but take them to be constant. For the Sivers function, we
assume a similar parametrization, with an extra multiplicative factor k⊥a to give it the appropriate behavior
in the small k⊥a region [20]:

∆fa/↑(xa, k⊥a) = ∆fa/↑(x)
√
2e

k⊥a

MS

e−k2

⊥a/〈k
2

⊥a〉S

π〈k2⊥a〉
, (51)

where the x-dependent function ∆fa/↑(xa) is not known, and should be determined phenomenologically by
fitting the available data on azimuthal asymmetries and moments; the k⊥ dependent Gaussian has been
assigned a width 〈k2⊥a〉S and a suitable normalization coefficient

√
2e to make sure it fulfills the appropriate

positivity bounds [21].
By inserting Eqs. (50) and (51) into Eq. (48) we get
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, (53)

where we have defined 〈k2⊥a〉 + 〈k2⊥b〉 ≡ 〈q2T 〉, and 〈k2⊥a〉2S + 〈k2⊥b〉 ≡ 〈q2T 〉S . Notice that Eq. (53) can be
rearranged as Eq. (25):
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Cahn effect in unpolarized D-Y   
M. Boglione, S. Melis, arXiv:1103.2084
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Cahn effect

gaussian k⊥ dependence

qT = k⊥a + k⊥b

no effect if 〈k2
⊥a〉 = 〈k2

⊥b〉

same conclusion holds for non gaussian distributions 

access to 〈k2
⊥〉
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a pion beam energy of 160 GeV, corresponding to

√
s = 17.4 GeV. The right panel shows the allowed region of x2 values as a

function of xF .
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FIG. 4: The single spin asymmetry A
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N for the Drell-Yan process p↑p → µ+µ− X at RHIC, as a function of xF (left

panel) and M (central panel). The integration ranges are (0 ≤ qT ≤ 1) GeV and (4 ≤ M ≤ 9) GeV, with the further constraint
0 ≤ y ≤ 3. The results are given at

√
s = 200 GeV. The right panel shows the allowed region of x1 values as a function of xF .

Predictions for AN 
Sivers functions as extracted  from SIDIS data, with opposite sign 

M.A., M. Boglione, U. D’Alesio, S. Melis, F. Murgia, A. Prokudin, e-Print: arXiv:0901.3078 
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√
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panel shows the allowed region of x2 values as a function of xF .
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